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AT HTGH MACH NUMBERS WITH VARIABLE FIUID PROPERTIES

By R. G. Deissler and A. L. Loeffler, Jr.

SUMMARY

A previous analysis of turbulent heat transfer and flow with vari-
able fluid properties in smooth passages is extended to flow over a flat
plste at high Mach numbers. Velocity and temperasture distributions are
calculated for a boundary lasyer in which the effects of both frictional
heating and external heat transfer are appreciable. The viscosity and
thermal conductivity sre assumed to vary as & power of the temperature,
while the Prandtl number and specific heat are taken as constant. Skin-
friction and heat-transfer coefficients are calculated and compared with
the incompressible values. The relstion between boundary-layer thickness
and distance along the plste is obtained for various Mach numbers. The
analytical results are compared with representative experimental data.

INTRODUCTICN

The current emphasis on high-speed flight has caused much interest
in research on compressible boundary layers. The skin friction in high
Mach nunber flight constitutes a large part of the total drag. There-
fore, the accurate prediction of skin friction is desireble for the de-
gsign of high-speed aircraft. Prediction of heat-transfer coefficients
in high Mach number flow is also important, because frictional heating
of the surface necessitates cooling to prevent structural failures.

The prediction of laminar boundary layers from the basic equations
of momentum, energy, and continuity has reached a high state of develop-
ment. A considersble amount of amalytical work on turbulent boundsry
layers has also been carried out. In the turbulent case, however, the
regults of the various snalyses disagree markedly because of the differ-
ent assumptions made by the various authors. These asnalyses are reviewed
in references 1 to 3. The introduction of assumptions into the treatment
of turbulent boundsry layers is at present unavoidable, since solving the
problem from the instantaneous equations of mamentum, energy, snd conbi-
nuity alone is not yet possible. In some respects, however, the model
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used for solving the problem might be improved. In nearly all the anal-
yses, the flow is divided into a laminar region, where turbulence is sup-
posed to be absent, and a fully turbulent region. The effect of varia-
tion of fluid properties on the laminar region is generally neglected.
Measurements of turbulent velocity profiles indicate that considerable
turbulent shear exists within the so-called laminar layer (ref. 4), so
that a more realistic model for the region close to the wall than that
used in previous analyses is desirable.

A somewhat improved treatment of the region close to the wall is
given in references 4 to 6, where the effects of turbulence snd of vari-
able fluid properties in this region are considered. In the region away
from the wall the von Kérmén similsrity expression has been considered
the most reasonsble expression availsble (ref. 7). In reference 8, fully
developed turbulent flow and heat transfer in smooth passages for air
with varieble properties are analyzed, and the results sgree well with
experimental data. The anaelysis is extended to the entrance regioms of
prassaeges and to high Prandtl numbers in references 9 and 10, where good
agreement with experiment is again obtained. Since the snalyses apply
well to entrance regions, the assumptions made in the analyses should
apply also to a compressible boundary layer. The anslysis is extended
to flow and heat transfer in a boundary layer at high Mach numbers in
this paper. (Some preliminsry results were presented in ref. 11.) The
varistion of properties due both to frictional heating and to external
heat transfer 1s considered. The viscosity and thermsl conductivity are
agsumed to vary as a power of the temperature, while the Prandtl number
and specific heat are taken as constant. -

SYMBOLS
A constant
a ratio of diffusivities, e /e
B constant
C constant
Ce friction coefficient, ZTW/pSug
cp specific heat of fluid at constant pressure
D constant
d exponent for viscosity variation with temperature, taken as 0.68

for air

919%
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Re

Re

5t

constant

enthalpy

heat-transfer coefficient, q./(t. - t,.)
thermal conductivity

Mach number based on free-stresm properties and veloeity,

g/~

constant, 0.109

Prandtl number, cpp./k

heat transfer in y-direction per unit time per unlt area
perfect gas constant

Reynolds number based on X, xugpg/hg

Reynolds number based on @, 911.5p5/p.8

Stanton number, h/cpusps

total temperature, t + (uZ/ZCP), deg &bs

(b, - T)cp'rw _1- (z/+,)

4T /Py P

total-temperature parameter,

static temperature, deg &bs

(ty - tlepTy _1l- (t/6,)

temperature paremeter,

VTl P B
2(t, - tlep 1 - (t/%,)
temperature parameter, ——- = Y = [t
W

velocity in x-direction
velocity parameter, u/ -‘/ TW_7 Py
velocity in y-direction

longitudinal distance along plate
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distence perpendicular from plate

y+/ TW7 Py
wall distance parameter,
u;:/ Py

lowest value of y“' for which equation for region ewsy from wall
spplies

frictional-hesting parameter, T/ 2e b0y

GV Tyl Oy
heat-transfer parameter, —5 57

cpthW

ratio of specific heats, taken as 1.400 for air

flow boundary-layer thickness

. B4/ 7pw
flow boundary-layer-thickness paremeter
’ ”'w; Py
thermal boundary-layer thickness
| 8Vl Py
thermal boundary-layer-thickness parameter, WD—
W

eddy diffusivity of momentum

eddy diffusivity of hest

ta.w t&
temperature-recovery factor, 5
u,(5 2c
P
5 e u u
momentum thickness f —_ (l - —\dy
" P U “6)
tum-thickn ter Vryloy
momentum- ckness parame
i oy
constant, 0.36
viscosity
density

ghear stress, force per unit area

9T97%
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Subscripts:

aw pertaining to adisbatic wall conditions

i incompressible; constant £luld properties

W pertaining to wa.'_l_'L

e} pertalning to edge of boundary layer or free stream
1 pertaining to edge of wall layer

Superscripts:

* reference

4 pertaining to fluctuations fram time average except in £t

time-averaged value

ANATYSTS AND DISCUSSION
Basglc Equations

The instantaneous velocities, temperature, end fluid properties in
the equations of momentum, energy, and continuity can be divided into
mean and fluctueting components. If time averages are teken, the follow-
ing equations for shear stress and heat transfer, applicable to flow in
a boundary layer, are obtained (appendix A):

au

(] t'v' - un s u'v’ (2)

dy

where constant specific heat is assumed. The bars dencte time averages,
and the primes indicate fluctuating components. Equations (1) and (2)
are the same as equations (A9) and (Al4) in appendix A if the bars over
the time-averaged velocities, temperatures, and properties are dropped.
The various terms in equations (1) and (2) mey be interpreted as follows:

qg=-k + pe

P

du
3 a molecular shear stress

-p u'v' turbulent shear stress

-k EE molecular heat transfer

dy
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pcp t'v' turbulent heat transfer

-
ay

up u'v' turbulent dissipation

molecular dissipation

Equations (1) and (2) suggest the form of the turbulent ent transfer
equations but contain the unknown quantities u'v' and t'v', so that
assumptions must be made before golutions can be obtained. For making
these assumptions it is convenient to introduce the relations

- du b dt
1 [ — T —
wv, = =€ —3 and t'v' = -Gh 3

where € and €, Bare the eddy diffusivities for momentum and heat trans-

fer, the values of which depend upon the amount and kind of turbulent
mixing at & point. When these relations are introduced, equations (1)
and (2) become

T=(u+pe)%—; (3)

a=- (k+peyey) T - ulu + pe)32 (4)

The physical significence of € and ¢, lies in the fact that e/(u/p)

is the ratio of turbulent to molecular shear stress (ref. 12), and
€,/ (k/pc_) 1s the ratio of turbulent to molecular heat transfer. Equa-

tions (5? and (4) can be written in dimensionless form es

T _(r . 0 e \aut
ce(Eetum) s )

9 (k1 o, ¢ \a&t" 0 +fu o e )gﬁ 6
Uy (kw Pry Py p.; pw) By Py Ty (&)
The subsecripts w refer to values at y = 0; that is, at the wall. The
quantity o 18 a frictiocnsl-hesting parameter that is an indicetion of
the varistion of properties due to frictional heating, and B is a heat-
flux pesrameter that is an indicetion of the variation of properties due
to heat transfer. The parameter o 1s always positive or zero, a value
of zero characterizing low-speed flow (i.e., My = 0). A zero value of

B refers to a vanlshingly small heat tramnsfer or an insulsted plate.

9TV
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A positive value of B indicates heating of the fluid, while negative
B mesns that the fluid is belng cooled. It is sometimes convenient to
write equation (6) in the following alternative dimensionless form:

Ba_(k L o, e Nat*' _+fp_ o e \aut
@ q (kw Pry Py * E;;pw) ay* = (”W'+ Py ”w;pw) ay* (7)

This equation is particularly convenient when 8 = 0, for which case
equation (6) becomes indeterminate.

Expressions for Eddy Diffusivity

In order to mske practical use of equations (5) to (7), the eddy
diffusivity € must be evaluated for each portion of the fiow. For this
purpose the boundary leyer is divided into two portions termed the "re-
gion away from the wall" and the "region close to the wall."

Region away from wall. - In the region away from the wall, it is
assumed that the turbulence at a point is a function mainly of local con-
ditions - that is, of the relative velocitles in the viecinity of the
point (ref. 13). This is probably not a good assumpbion in the region
near the edge of the boundary layer, where considersble diffusion of the
turbulence occurs (ref. 14) and, in addition, the turbulence is inter-
mittent. However, in that outer region the velocity or temperature
gradients are so small with respect to these gradients nearer the wall
that the error in calculated velocities or temperatures should not be
large. A Taylor series expansion for u as a function of transverse
distance, then, indicates that € is a function of du/dy, dzu/dyz,
dsu/dy3, and so forth. If, as & first epproximation, € 1s considered
as a function only of the first and second derivatives, and dimensional

analysis is applied,
2 du s
e:ed_u,du”Zﬁﬂl (8)

T oy (ﬁ)z

dyz

This expression was obtained by von Kérmén and i$ generally known as the
Kérmfn similarity hypothesis (ref. 7). The constant x is to be deter-
mined experimentally. '

Region close to wall. - In the region close to the wall it is as-
sumed that € is a function only of quantities measured relative to the




8 NACA TN 4262

wall - that is, of u and y.l This assumption includes, to a first
approximation, an effect of the derivative du/dy. Since the flow be-
comes very nearly laminsr as the wall is approached, the first deriva-
tive approaches the value u/y and hence msy be omitted, since u eand
y salready appear in the functional relation. By using dimensionsl

analysis,
e = e(u,y) = nbwy ()
where n 1s an experimental comnstant.

Bquations (8) and (9) can be considered as reasonable first approx-
imgtions for €. Whether these spproximetions are adequate or not can
at present be determined only by experiment.

Determination of experimental constants. - The constants n and
were determined from pipe date in which the properties were essentially
constant. Equation (5), with equation (8) or (9), was integrated (con-
stant properties and 'rs for the regions close to and eway from the wall
in reference 4. The molecular sheaxr stress vas neglected in the region
awey from the wall, and the well-known Kérmin-Prandtl logarithmic equa-
tion was cbtained in thet region. In matching the two solutions it was
assumed. that the veloclity is continuocus at the Junction of the two
regions.

The integrated equations (ref 4) for the regions close to and away

from the wall are plotted in figure 1 with the constants n = 0.109 and

= 0.36 determined from pipe data (refs. 4 and 14). The data indicate
tha.t the equation for the region close to the wall applies for y‘+ < 26,
and the equation for the region away from the wall applies for yt > 26.
Included in the plot are data for a low-speed boundary layer with zero
pressure gradient from reference 15. The agreement with the curve is
satisfactory.

The values for the constents n = 0.109 end x = 0.36 should apply
to flow with veriasble as well as constent properties if the basic assump-

tiong maede for € in the preceding sections apply to variabl% pﬁerties H

that is, if e = €(u,y) close to the wall and e = e(du/dy, &
away from the well. The constant y’{, however, requires further consid-

eration and is discussed in the next section.

1Reference 10 shows that the kinematic viscosity has an effect on
€ in the region very close to the well. However, that effect becomes
important only for heat or mass transfer at Prandtl or Schmidt numbers
appreciably grester than 1.

aTo%
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Additional Assumptions

In addition to the assumptions for eddy diffusivity discussed in
the preceding section, several additional assumptions must be made for
solving equatians (5) to (7).

Variastion of properties with temperature. - For geses, the viscosity

varies epproximately as td, where d has an average value of 0.68 for
temperatures between 0° and 2000° F. The Prandtl number (Pr = 0.73) and
specific heat cp are assumed constant, because their variations with

temperature are of a lower order of magnitude than the veariations of the
other properties. If ey and Prandtl number are considered constant,
the thermsl conductivity %k will vary with temperature in the same way
as the viscosity, or as t&, For constant pressure scross the boundsry
layer, the density p is Inversely proportional to +t.

With the preceding assumptions, the property retios in equations
(5) to (7) can be written as

d 0.68
hehe(3) () (ol
e =

From the definitions of B end t¥,

-ti- =1 - Bt+ (12)
w

or, if equstion (7) rather than equation (6) is used,

4
Et_ =1-att (13)
W

The property retios in equatioms (Slrto (7) can therefore be written in
terms of p end t¥ or a« and t .

Variations of t and g across boundary layer. - The momentum
equation (A7) indicates that, for a flat plate (zero pressure gradient),
dt/dy = d(pdu/dy)/dy = O at the wall. Since T 1is zero at the
edge of the boundary layer, the actual variation of T across the
boundary layer might be expected, in general, to lie between a linear
variation (t/7, =1 - (y/8)) and t/7, = 1. Data on low-speed isothermal
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flow over a flat plate (ref. 15) show that this type of variation does
exist, except in a narrow region near the edge of the boundary layer.
For determining the sensitivity of the veloclty or tempersture profile
to shear-stress variation, it should therefore be sufficient to compare
the profiles for & constant and for a linearly varying shear stress.
Appendix B shows that 1t/7, = q/q, for a flat plate if the Prendtl num-

W
ber 1s 1.

Figure 2 shows ut or T' plotted against y* for s Prendtl num-
ber of 1 for both a constant and a lineearly varying shear stress and
hest transfer, where TF is the total-temperature parameter. Curves
are shown for B =0 and o = 0, 0.003, and 0.008, which cover much of
the range of Mach number and Reynolds nmumber of interest. The equations
for calculating the curves are given in sppendix D. The equation for
the region away from the wall was taken to spply for yt > 30 rather
than > 26 when the shear stress was variable, in order to give better
agreement with the data for constant properties. The curve for o = 0.008
is cut off at the point shown because the Mach number becomes infinite,
as can be seen from equation (D3) (for aut? = 1). The curves indicate
that variable shear stress and heat transfer have but a slight effect on
the veloclty and temperasture profiles. Similar curves were obtained in
figure 11 of reference 6 for B # O and o = 0. The same conclusions
should spply to Prandtl numbers differing slightly from 1, so that the
effects of the variations of T and q across the boundary layer are
neglected for solving equations (5) to (7).

Renges of applicebility of equations for flow close to and away
from wall. - It was determined from the data for constant propertles
that the lowest value of y+ for which the equetion for the reglon
away from the wall aspplies is y{ = 26 when the varistion of shear stress

with y 1is neglected and the molecular shear stress is neglected in the
region awey from the wall. The guestion arises as to how y{ varies

when the properties are varisble. The simplest assumption is that yi'

is constent and equsl to 26. This assumption, which implies that the
wall properties govern the thickness of the wall layer

(y{ = y,/T 7pW/(uw/pw)), is similar to von Kérmén's essumption (ref.
16). Figure 12 of reference 6 shows that essentilally the same curves
are obtained when the molecular shear stress is neglected in the region
eway from the wall as when it is considered, the difference being that,
when the molecular shear stress is included, yz has the constant velue
of 16 rather than 26. ; ' .

Another assumption, which might be somewhat more reasonable than
assuming y{ comstant, is that yl' oceurs at a given comstant ratio

of turbulent to molecular shear stress e/(u/p). That is, the turbu-
lence changes from that described by equation (9) to that described by

IE

9197
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equation (8) when the ratio of turbulent to molecular shear stress
reaches a certain value. In this case the more complete equations are
used for the region away from the wall, in which the molecular shear-
stress and heat-transfer terms are retained. and the slopes of the equa-
tions for flow close to and away from the wall are matched at yl

(yl 16 for B =oa = 0).

In figure 3, ut or TH is plotted against y"' for g Prandtl num-
ber of 1 using the two assumptions for y’{ discussed in the preceding
paragraphs. Curves are shown for B = 0O and o = 0, 0.003, and 0.008.
The equations for calculating the curves are given in appendix C. The
curves indicete that the velocilty and 'bemgerature profiles ere spparently
insensitive to the assumption used for Similsr results were cbh-

tained in figure 13 of reference 6 for B 74 O and o = 0. The simpler
procedure of neglecting the molecular shear siress and heat transfer in
the region awsy from the wall and sssuming y{ = constant = 26 is there-

fore adopted in the following calculations.

Ratio of eddy diffusivities for heat and momentum transfer. - In
most analyses the ratio of eddy diffusivities a +that occurs in equa-
tions (6) and (7) is set equal to 1; that assumption has given heat-
transfer coefficients in good agreement with experiment (ref. 8). It is
of interest that Prandtl's mixing-length theory, which assumes that a
turbulent particle moves a given distance and then suddenly mixes with
the fluid and transfers its heat snd momentum, gives & value of a = 1.
Although the actual turbulence mechanism may be more complicated than
indicated by that theory, it does indicate that a value of a on the
order of 1 is not unreasonable.

In the present analysis the assumption of & = 1 is retained, but
in some cases the calculetions are also carried out for a = 1.07 in
order to determine the effect of varying a. A ratio of diffusivities
of 1.07 was obtained from some preliminary experiments on recovery fac-
tors for fully developed flow in & tube.

Velocity snd Tempersture Distributions in Boundary Iayers

For obtaining velocity and temperature distributions close to the
wall, equations (9) to (13) are substituted into equaticams (5) to (7).

Equatlons (5) and (6) become, in integral form, with t/7, = q/q, = 1,
val .
u+ = dy T (lé)
(l Bt+)d + - n2u+y+
1 - gt
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(1 + 2 % u+)dy+

(1 - ptt)d a
Pr ¥ 1 - ptt n2u+y+

t+ = (15)

0

Equations (14) and (15) can be solved simultaneously by iteration; that
is, assumed relations between ut and y* and t+ and yt are sub-
stituted into the right sides of the equations, and new values of ut
and t¥ are calculated by numerical integration. These new values are
then substituted into the right sides of the equations and the process
is repeated until the values of ut and t¥ do not change appreciably.
Equations (14) and (15) give the relations among ut, t+, end y' for
various values of o and B For flow close to the wall (y* < 26). For
B=0eand o#f 0, t%¥ becomes infinite, so that equations (5) and (7)
must be used. These equations, with equation (13), become

-+

J +
vt = &y (16)
(1 - d,t"")d + ——-—l 1 e n2u+y+
0O - &
+
y
. (g + 2u+)dy+
tF = vy (17)
(1 - at* ) + 1 2ytyt

n
Pr 1 - CI;t+'

0
Equations (16) and (17) are solved similarly to equations (14) and (15).

In the region away from the wall, the molecular shear stress and
molecular hest transfer are neglected. Dividing equation (6) by equa-
tion (5) gives, with 'r/'rw =a/g, =1,

o+ att
1+2=-u =8 — 18

Integrating equation (18) fram yI to yv gives

+
t+-’c"'+u—+—E+-°‘—‘u"'z-ﬁ'-uJ’:2 (19)
-1 8 a Ba pa 1

9TOP
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From equations (11}, (12), and (19),

1
£ - (20)
P + Bu—l‘: a +2  But o 42
l—Btl+—a_.-+E -T—Eu

Substitution of equations (8) and (20) into (5) and one integration give,
for the region away from the wall,

. m-l‘: 2a1 +B
aut . V/o/e Jﬁ?m(a-aﬁti+ﬁuimiz) (21)
K& dy.[. =
By letting
+
z = gin~T Zou + B (22)
+/a/e -J[?z + 4a(a - aBt{ + Bu'J': + aul_'l_'z)

and integrating equation (21),

(cos '!/:75 z + "f‘j?a siné@ z) + K (23)

A

v °
y o=
1+ —

ax

The constant K is evaluated in the usual way by letting

du+/dy+ = o at =0 in equation (21) (ref. 7) and substituting (21)
into (22) and (23) at+ vt = 0.2 By ysing this procedure, K = 0. To
determine K, set u = ul_']'_ when y = yl Then,

vt o [eon (B 1) 4 AT pua( ]

T 2L l:cos (3@ zl) + 3@ sin (—‘-‘@ zl)] o)

wvhere z is given by equation (22) and 2z; 1is the value of z at

¥i = 26. Equations (22) and (2¢) give the relation between ut and yt

27his assumption can be avoided by including the molecular shear
stress and heat transfer in the region away from the wa.iu_ and evalustling
K by assuming s continuous velocity derivative at y (£ig. 12, ref. 6).
This assumption gives essentially the same results as tha.t made in the
text.
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for various values of o and B. The quantity +tt can then be calecu-
lated from equation (19).

For B =0Oand a# 0, t* becames infinite, and t+' = (B/a)t™
must be used. Equation (19) becomes, in terms of t*',

+2

+r_+'_£ .|._ul _E_+ 'll+2
o=t m - et Wt (25)

1
Equetions (22) and (24) apply to the cese for P =Oand « £ 0 if or:b'{
is substituted for Bt7 in equation (22).

For a« = O, equation (23) becomes indeterminate, and equation (21)
for zero fricticnal heating from reference 6 can be used.

Typical velocity and tempersture distributions for various values
of the frictional-heating parameter o and of the heat-flux parameter
B are presented in figures 4 to 6. Positive values of B correspond
to heat addition to the air; negative values, to heat extraction. The
curves of u't against y* (fig. 4) indicate considersble flattening of
the velocity profile as either « or B increases positively. This is
caused by the decreasing temperstures in the outer regions of the bound-
ary layer compared with the wall temperature when either the Mach number
is high (high o) or the heat transfer from the surface to the air is
high. Thus, the density is higher in the outer regions of the boundary
layer, with consequent flattening of the profile (eq. (5)). Negative
values of B produce the opposite effect. For certein combinations of
o and B (with B negative), the effect of B on the curves should
tend to cancel the effect of o, and the resulting profile should not
differ greatly fram the o = B = O curve. The curve for o = 0.002,
B = -0.05 in figure 4 is close to the curve for o = B = 0. Included
in figure 4 for comparison are experimentsl datas from reference 17 for
an o of 0.00176, B = O, and a corresponding Mach number My of 2.82.

The deta are in reasonable agreement with the predicted profiles.

In figure 5 'T+ is plotted against y"' for various values of o
and PB. The total-temperature parameter T¥ is plotted rather than t"',
because the trends are somewhat more consistent, although some crossing
over of the curves occurs even with T'. For calculation purposes, &
better representation can be obtained by plotting ot against ut. The
quantity T  is related to th by the relation

T = ¢t - % ut2 (26)

.aTo%
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Skin-Friction Coefficients

The skin-friction coefficlent 1s defined as

2T
P5Us

where the subscript 8 refers to values outside the boundary leyer.
Equation (27) becomes, in dimensionless form,

e _ 2@ - atf')  2(1 - pti)
o 2 ) - - 2 = (28)

~ P 2 ug uy

For comparison with experimental data, it is convenient to introduce the

momentun thickness,
S
esf _D__u_(l-_ll_)dy (29)
L 5% \ U

which in dimensionless form is

s+
1 -+ -
= (1 - aty ) — <% (- eyt (30)
o l-a,t u,(3 uy

Then the Reynolds number based on the momentum thickness and free-stream
properties is

o m
61158=9++W8 (31)

Re, =
6 Bs Pw

where the property retios are obtained from equations (10) to (13). The
Mach number for a perfect gas is

- + [ 2a
Yo = s e \[T T D) (s2)

If values are given to o, B, and &', where &% is the va.lue of
y"' at the edge of the flow boundery layer, then values of u'g ) tS , and
so forth can be read from curves similar to those in figures 4 to 6.
Values of Cg, Re6 , and My can then be celculated from equations (28),

(31) , and (32). This procedure aessumes that the thermal and flow boundary
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layers are of equal thickness. From the calculations in a later sectionm,
where relations between boundery-layer thickness and distance along the
Plate are calculated, it can be shown that this is a good assumption for
gases when the thermal and flow boundary lsyers begin at the same point.
For the case of Pr = a = 1 the assumption holds exactly, as can be seen
by substituting u' = TF into equations (42) and (43), which are then
identical.

Predicted skin-friction coefficients are plotted against Reg 1in
figure 7 for varlous values of Mach number for an insulated plate
(B = 0). These curves are for ¢ /e = a = 1. The effect on the curves

of changing a +to0 1.07 was negligible. The values of C decrease
considersbly as Mach number increases. Included in the plot are experi-
mental data of a number of investigators for Mach numbers up to 4.93.
In genersl, the data are in good agreement with the predicted curves.

The ratio of the friction coefficient to the incompressible coeffi-
cient is plotted against Mach number for various values of Reg for

B =0 in figure 8. The values of Cp/Cp 1 decrease with Rey, but at

8 decreasing rate. For comparison purposes the analytical curve of
Cr/Ce,; ageinst My for a value of Rey of 6000 is plotted in figure

9 together with dasta taken near this value of Ree.

If heat transfer occurs between the plate and the gtream, it is
convenient to specify the ratio of the actual wall temperature to the
adiabatic wall temperature for a given Mach number and Ree. For an in-

sulated plate the adiabatic wall tempersture msy be written as
i
tow = Bs + N 3 (33a)

vhere 17 is the temperature-recovery factor, the calculation of which
is discussed in the next section. Equation (33a) can be written in
dimensionless form as

tw 1

= 33b)
t + +2 (
aw L - Bts + oy

Figure 10 is similer to figure 7, except that the plate is now
cooled (tw/taw = 0.5). The trends are simllar to those of figure 7, but

all the curves are displaced upward. This increase in friction coeffi-
cient was also obtained for flow in a tube with cooling (ref. 5). Also
included in this figure are wind-tunnel dete (ref. 18) obtained at high
Mach number using nitrogen as the working fluid. The agreement with
theory appesrs to be within experimental efror.

aToY
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Figure 11 is similaxr to figure 8 but is for a value of 0.5 for
tw/taw. It is of interest to note from both figures 8 and 11 that the

rercentage effect of varying Reynolds number is much greater for the
higher Mach numbers. Thus, figure 8 indicates that for a Mach number of
20 the value of Cf/bf,i for Rey, of 10° 1s less then half that for

3
Re6 of 10v.

Reference Temperatures and Extension of Results to
Greater Cooling Rates
The defining equation for reference temperature is

*
t7 =ty + C(t, - tg) + D(tg - t.) (342)

where C and D are constants to be evaluated from theoretical or ex-
perimental results. Dividing equation (34a) by tg and sssuming that
the recovery factor is constant at 0.88 and that 1 = 1.40 result in a
more useful form of the equation:

*

%5=(1-c)+Ec-n)%+1{)(1+o.17smg)

According to the concept of reference temperature, the relation be-
tween incompressible friction factor and Reynolds number should hold for
varisble-property flow if the properties are evaluated at the reference
temperature. The results of this analysis could not be represented ac-
curately in such a manner. It was necessary to write the incompressible
relstion in the form

E

Co : = ———or
f£,i 338.0744

where E is a constant. It should be noted that this is not the true
incampressible relation and is used only for reference temperature pur-
poses. If the properties are evalusted at the reference temperature,

the result is
. - E (Ef)[0.875
£ 362.0744 ta
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Dividing this equation by the previous one gives

c #~0.875
£ £
_cf,i = (?s-) (34b)

For Re, Of 10°, evaluating the constants C and D in the refer-
ence temperature equation from the results in figures 8 end 11 and equa.-

tion (34b) gives C = 0.56 and D = 0.184. The reference tempersture
can then be written

t&W

¥ tw

o = 0.6k + (O.376 LU 0.184)(1 + 0.176 1\%) (34c)
The results of the use of equations (34b) and (34c) are shown as daghed
lines in figures 8 énd 11. Thus, by use of equations (34b) and (34c) it
should be possible to extend the results of this anaslysis to values of
t [ty other than 1.0 and 0.5 if the value of Rey is near 10°.

An estimete for lower Reynolds numbers may be obtained by first
using the preceding method to f£ind the friction factor at Re9 = 10°

and then finding the ratios_of friction factor at the desired Reynolds
number to that at Ree = 105 from figures 8 and 11l. These ratios can
then be interpolated or extrapolated to the desired value of o/ o

This procedure can be justified since the ratio does not vary greatly

with b/t . .

Stanton Numbers and Recove¥y Factors

The Stanton number based on the difference between the wall end the
adiabatic wall tempersture, with properties evaluated at the free-stream
temperature, is given by

ts
l—-_t—
tscpﬁp = lp = - (35)
808 .+ + P ts 42 _
taUs 5 L -, - Mo

where equation (33a) is used. The temperature and density ratios are
determined from equations (11) and (12) or (13). For B =0 and a # O,
equetion (35) becomes indeterminate. For that case set

+! + o +! ;
1- (t5 /1':W) = oty and t% = (0(,/13)1:8 . With these substitutions equa-
tion (35) becomes

9T
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St = B 36
i (pg/o ) (8" - mit?) (3)

From equations (7) and (5) (q‘/qW = /1, = 1),

5 N st
+ _ B dy zut gy’ (37)
a k 1 P € k €

IR <R
a W— — + &
0 kw Prw Pyr Py o kw Prw Py, Ko/ Py

The second integral in this equation cen be replaced by (t'g' ) B=0" But
equation (33a) cen be written in dimensionless form as
+2 +!
= (t

Substituting equations (37) and (38) into (36), with the second integral
in equation (37) replaced by (t‘é’ )B=O’ glves

_ 1
St = = (39)
i 22 %
P x 1 .0

c
a
o ST Py M/ Por

For evaluating equation (39) in the region close to the wall,
e/ (/o) = n?utyt. For the region awsy from the wall, € could be ob-

tained from equation (8). However, it is more convenient to obtain e
from equation (5) , which for the region away from the wall becames

P € _ 1
Oy Hl Py gut/ayt
Equation (39) cen be used for B = O or B # O. For given values of

5, @, and B, velues of Stanton number, Mach number, t./tg,, and Reg

can(be)ca.lculated from equations (39), (32), (33b), (30), (3L), and (10)
to (13).

Predicted Stanton numbers are plotted against Be9 for various
Mach numbers for t/tg, = L in figure 12. The case Of By/ty,; = 1 is

a limiting case that can be approached as closely as desired by making
the heat flux smsll. When tw/taw = 1, there is no effect of variable
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properties due to heat flux. The Stanton numbers in figure 12 show
trends simller to those of the friction coefficients in figure 7. In-
cluded in the figure are experimental date for low heat flux obtained by
a number of investigators. In genersl, the data are in good agreement
with the predicted curves. The curves in figure 12 are for eh/e =g = 1,

Similar curves for an a of 1.07 were 3 to 5 percent higher for a Mach
number of O, but the difference decreased at higher Mach numbers. The
curves for & = 1 aye in slightly better agreement with the data than
those for a = 1.07. '

L]

>
22}
The ratio of Stanton number to the incompressible Stenton number is P~
plotted against Mach number for various values of Reg for tw/taw =1
in figure 13. These curves are vexry nearly the same ag those for
Cf/Cf,i in figure 8.
Figure 14 is similar to figure 12, except that twlﬁaw = 0.5. As
was the case for the friction coefficients in figure 10, the Stanton
numbers increase as tw/taw decreases. The corresponding plot of
S‘b/Sti ageinst Mach number for various values of Rey and tw/taw = 0.5
is shown in figure 15. L

Temperature-recovery factors, as calculated from equation (38), are
shown in figure 16 for Mach numbers from O to 8. Curves are shown for
a=1and a=1.07. The curves for a = 1.07 are in somewhat better
agreement with most of the experimental data than those for a = 1.

This does not mean that an a of 1.07 should be used for calculating
hest trensfer or Stanton numbers. According to Reichardt's hypothesis,
the value of & should be close to 1 at the wall and Increase with dis-
tance from the wall (ref. 12). The temperature profiles for calculating
hegt-transfer coefficients are very steep near the wall, so that the im-
portant charges with distance take place near the wall where a 1is close
to 1. In the case of recovery factors, however, the plate is insulated,
8o that the temperature gradient is zero at the wall. The gradients near
the wall will therefore be smaller than in the case of heat transfer, and
important changes of temperature with distance might occur In regions
eway from the wall where a 1is somewhat greater than 1.

Figures 17(a) and (b) show the curves of the Reynolds analogy factor
25t/C; against Mach mumber for verious Rey, for tftey eaual to 1.0

and 0.5, respectively. If Reynolds' analogy held strictly (Pr = a = 1),
the Stanton number would be equal to one-half the friction factor and
ZSt/Cf would be unity. Figure 17 shows & varlation of the Reynolds
snalogy factor over the range 1.065 to 1.280. 1In general, ZSt/Cf in-

creases with incressing Mach number and with decreasing Reynolds number
and increases slightly with decreasing tw/taw at the higher Mach



4616

NHACA TN 4262 21

numbers. These resulis are in spproximete agreement with those of
Rubesin (ref. 19), who estimated that 25t/Cp, would be in the range
1.18 to 1.21 at least up to My of 5.

To obtain approximgte values of St as a function of Ree and Mg
for tw/taw other than 1.0 and 0.5, it is recommended that the results
of figure 17 be interpolated or exbrapolated to give the value of ZS’G/Cf
at the desired comdition. Then Cp can be found from equations (34b)
snd (34c) as previously described, and thus the value of St is obtained.

Relation between Boundary-Layer Thickness and Distance along Plate

From the results given in the preceding sections, the skin friction
or hest transfer for a given boundary-layer or momentum thickness can be
calculated. In order to calculate the relations between thermel or f£low
boundary-layer thickness and distance along the plate, the well-known
integral momentum and energy equations may be used. These equations may
be written as follows for a flat plate (zero pressure gradilent):

5
T = %\‘[: Eau(us - u)d;y] (40)
On
Q= -‘%E‘_/" pru(T - Ts)dy] (41)
0 }

If 8=258, =0 for x = 0 and equations (40) and (41) are integrated
with respect to x, they become, in dimensionless form,

(] st
Ps +2 _|Fw 1 p .+ o+
Rex=f — ug d——+f —u(us—u)d:y' (42)
A Py ""8118 b Py
[] o . 5
- + 78 4l ¥y L £t +
Re, = T'gua ‘chit(%)Tg "[ qu(Te5 TH)ay (43)

where the bracket for the upper limit of integration refers to the value
of the variable of integration at that point. These equations give the
relations between &t and Rex and 6‘1‘; and Rex. The property ratios

are obtained from equations (10) to (13).
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Equation (42) can be written in the more convenient form

Re9
dRee
Re, = 2 5 (44)
0 T

The Reynolds number based on momentum thickness Bee is plotted agsinst

Rex, as found from equation (44), for an insulasted plate in figure 18.
The value of Ree decreases at a given Re, as the Mach number increases

if the free-stresm properties remain constent. This is caused (eq. (44))
by the decrease of friction factor with increasing Mach number (fig. 7).
Data included in figure 18 agree reasonsbly well with the analytical
curves.

Figure 19 is similar to figure 18, except thet t./tgy; = 0.5. For

given values of Re, and Mach number the values of Reg are generally
e little higher for tw/taw of 0.5 than for t,/tg, of 1. This trend

can be understood fram exsminetion of equation (44), since Cg is higher
for t.,/tg, of 0.5 (fig. 10) than for ty/tgy of 1.0 (fig. 7).

Predicted skin-friction coefficients for an insulated plate are
plotted against Rex in figure 20. The trends with Mach nunber are
gimilar to those obtained when Cg 1is plotted against Reg but are
less pronounced, because the boundary-lsyer thickness at a given x de-
creages with increassing Mach number. Experimental dabts for low-speed
flow included in the figure are in good sgreement with the predicted
curve for s Mach number of zero. Dabta for higher Mach numbers are salso
in reasonable agreement with the predicted curves but are somewhat more
scattered then the data in figure 7, where C;p 1is plotted against Rey.

This scatter is apparently caused by uncertainty as to the point at which
the boundary layer actually starts in a supersonic flow.

In figure 21, the theoretical curves are replotted as Cr/Cr 1

againgt Mach number for verious Reynolds nunbers based on x. The
effect on cf/cf ; of varying Re, becomes appreclgble at high Mach
numbers . ?

Stanton nunbers for an insulated plate are plotted against Re,

for a Mach number of zero in figure 22. Curves for higher Mach numbers
and for t.,/tg, of 0.5 involve considerably more celculation and were

not obtailned.

Figures 23 and 24 are anslogous to figures 20 and 21, respectively,
except that they are for tW/taw of 0.5. The friction fectors, as ex-

pected, are higher for the larger rates of cooling.

aT9% .
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Reference Temperature for Re, Results

The customary use of a reference temperature concept requires that
the Reynolds number dependence of C, end of St be the same for all

Mach numbers so that Cf/Cf ;4 éend St/S‘bi should not be functions of
Reynolds number. Ebcamina:bion of the predicted curves of Cf/Cf i &nd
St/St; against Mach number as shown in figures 8, 11, 13, 15, 21, and
24 shows, however, that Cf/Cf:’i and St/Sti are strong functions of

Reynolds number at the higher Mach numbers. Therefore, the present the-
ory cannot be represented accurately by one reference tempersture valid
for all Reynolds numbers.

For purposes of comparison, however, the results obtained by using
Eckert's suggested reference temperature (ref. 3) are shown in figures
21l and 24. Agreement with the present theory for Re = 108 is guite

good. Use of Eckert's reference tempersture method to gsolve for Cf/Cf 17
is recommended, then, if large values of Re, (near 108) are considered.
In order to solve for Cp, the value of Cf can be taken from the
curve for Mg = O in figure 20. An approx:_mation (within 5 percent) to
this case is

Cp = 0.0292 Re;O 1%

In order to solve for values of Cp at values of tw/taw other then
1.0 and 0.5 and for values of Rey, other than 108, the same spproximate
procedure as recommended for Rey as the variable can be employed. For

this case, however, instead of figures 8 and 11, figures 21 and 24 and
Eckert's reference temperature should be ubilized.

To obtain an approximate relation between Stanton number and Re,

the following procedure is recommended: Find the value of Reg corre-
sponding to the specified Rey by Interpolation or extrepolation of fig-
ures 18 gnd 19. From this value of Ree find the Reynolds analogy fac-

tor by similar use of figure 17 for the specified values of tw/taw and
MS' This value of the Reynolds anslogy factor and the value of Cg oODb-

tained as shown in the previous paragraph are sufficient to solve for
the Stanton number for the specified conditions.

Closing Remarks

No attempt has been made in this analysis to include the effects of
dissociation, shock waves, radiation, slip flow, or induced pressure
gradients.
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A rough estimate of the effect of dissocistion may be inferred, as
pointed out by Eckert (ref. 3), from the theory of laminar boundary
layers. Thus, both Crown (ref. 20) and Moore (ref. 21) conclude that
the effect of dissociation on friction factor and heat flux for the lam-
inar boundary lsyer will be small if the wall bemperature is less than
the air dissoclation temperature, which, even at a pressure of 0.0001
etmosphere, is sbove 3000° F. Their calculations were made for Mesch num-
bers up to 20. Where dissociation is eppreciable, it is recommended
thet the heab-transfer coefficients presented in this report be inter-
preted as bagsed on an enthalpy difference instead of a temperature 3if-
ference, Thus,

and

St = 3
(Hy - HgylugPs
where H 1s the enthalpy.

Although in practice there would be a shock wave originsting near
the leading edge of the flat plate for high Mach numbers, the effect on
temperature and pressure distributions appears too complicated to be
taken into account. Therefore, constancy of free- stream pressure and
temperature has been assumed.

The possibility of encountering slip flow at high Mach number must
also be considered. According to Eckert (ref. 3) the assumption of a

5 M
continuum is valid as long as the Knudsen number | = 8 is less
0.499 Reg

than 0.01. To cbtain g conservative estimate for the range of condi- 4
tioms considered in this report, values of M.‘3 and Reg of 20 and 107,

respectively, are used. For these values the Knudsen number is
0.00298, which is well below the crifterion for slip flow.

SUMMARY CF RESULTS

The following results’ were obtained from the snalysis of turbulent
flow and heat transfer over-a flat plate at high Mach numbers:

1. The frictional heabting that occurs at high Mach numbers produced
a flattening of the velocity profile, as does heating the plaete by other
meens. Cooling the plate caused the velocity gradients near the outer
edge of the boundery layer to Increase.

L 47
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2. The skin-friction coefficients and Stanton numbers at a given
Reynolds number decreased as Mach number increased.

3. The curves for the ratio of friction coefficient to the incom-
pressible coefficient against Mach number agreed closely with the curves
for the ratio of Stanton number to incompressible Stenton number ageinst
Mech number.

4. Cooling the plate to offset the effects of frictional heating
increased the friction coefficients and Stanton numbers.

5. Frictioneal heating at high Mech numbers produced a thinning of
the boundary layer at a given position on the plate for the same free-
stream properties.

6. The predicted friction coefficients and Stanton numbers agreed
closely with representative experimental data.

7. The Reynolds number effect on both friction factor and Stanton
number incresses greatly with increasing Mach number.

Lewls Flight Propulsion ILaboratory
Netional Advisory Committee for Aeronauties
Cleveland, Ohio, January 17, 1958
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APPENDIX A

DERTVATION (F TURBULENT MOMENTUM AND ENERGY EQUATIONS
Momentum Equetion

The momentum equation for compressible boundary-layer flow past a
flat plate cen be written as

pu%—z+pV%l=;%(ug}-;) (A1)

and the continuilty equation as

ou) | Aev) . g (a2)

Time derivatives and pressure gradients are.neglected in equations (a1)

and (A2), as they drop out when time averages are taken. i
The instantaneous quantities in equation (Al) are now replaced by

thelr time averages and fluctuating components, which are written as

u=1u+u' p=p+op'

(A3)

[T

<l

v=v+v )

and time averages are taken term by term. The following order-of-
megnitude criteria are used for both the momentum and energy equations:

% = o(1)

2 - o(s™)
P, u, t =0(1)
v = 0(d)
%, & =~ o(s%)

av', p'v', ete. = 0(3)

plu'v?, p'u'z, ebc. = 0(83/2)

3
Double correlations containing k' and p' = 0(8 )

9T9%,
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The first five of these criteria are the usual boundary-layer assumptions.
The sixth results fram assuming that the laminar and turbulent shear
stresses are of the same order of magnitude. The seventh is consistent
with the sixth, since a triple correlation should be roughly of the mag-
nitude of a double correlation ralsed to the 3/2 power. The eighth
appears justified since it might be expected that k' =and _p' should
be at least one-half order of magnitude less than k and .

With the preceding criteris, the time-averaged momentum equation
becomes, on neglecting terms of magnitude & and less,

EEF;-I- (E)Ffp'v‘)%;u:%(ﬁ%-—u'v') (as)
and the continuity equation,
aa(Ecu) + Bg;cv) + a[pé;r' =0 (AS)

Considering the relation
oV + p'v! = pv (as)
equations (A4) and (A5) can be rewritten

G, --3m_ D
pu&+pVE—§§(

_3_0%3_)+§%17_2=0 (A8)

Comparison of equations (Al) and (A7) leads to the definition of 7 as

=1

&3 rﬁ?) (a7)

and

T=u&;-3u'v‘ (A9)

Energy Equation

The energy equation for compressible boundary-layer flow past a

flat plate is 2
puc, % + pve, % = % (k. %:—3) + B (%) (A10)



28 NACA TN 4262

Time derivatives and pressure gradients are again neglec'bed ag time-
averaging cancels them. If the momentum equation (Al) is multiplied
through by u and then added to equation (AlQ), the result is

2 2
pu%(cpt +12-)+ pv% (cpt +E§.)=%(k%+ p.u%) (A11)
where p is considered constant.

Again substituting for the instantaneocus quantities the sum of the
time-averaged and fluctusting components, and then neglecting terms of
small order of magnitude on taking time averages, equation (All) becomes

5533}—:(cpt+—2)+ Gv+pv')§w—(cpt +—-z-) =

z (z 4 - Bep T - B _u‘v') (a12)

Agein employing equation (A8), equation (Al2) becomes
- - "Z . _ Tz
ud\—x(cpt+ ) pv%( t+£2-)=
< (‘E 47 S - Be, T - 5i __u'v') (a13)

A comperison of equations (All) and (A13) shows that

_(E%-;’: +aag§u - Do, VT - pa _u'v') (A14)

It should be noted that this treatment gives no density fluctuabion
terms in the expressions for T and g. This same result was found by
Ven Driest (ref. 22) and by Bubesin (ref. 19). Combining p o'v' with
pv and writing the sum as pv present no difficulty, because, in a
complete solution, pv could be eliminated from the momentum and energy
equetions by the equation of continuity. An assumption for p o'v' would
be necessary only if it were desired to calculate v.

, 9197

1
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APPENDIX B

'

PROOF THAT -T =9 FOR Pr=a=1
Tw Gy =

In terms of eddy diffusivities, the momentum and energy equations
may be written as follows:

.wdo2 msa%‘—}] | (1)
2 -2 —_ =
(cpt +—)+pv$(cpt +%—)=§a§ I:(E+Ecpeh)%§_+ﬁ(ﬂ+ﬁe)%€}

(B2)
The energy equetion (B2) can be rearranged to read

Eﬁ% (cpf +§;) +E—?% (cpE +£22—
-5 {:Pr + pey 5; (c %) + (o + pe) (—2)] (B3)

For Pr = a = 1, equation (B3) becomes

—o =2

If equations (Bl) and (B4) are each solved for pu and the results
equated, there is obtained

[:(- + Pe) a‘r] S 2 [ca . ;e)%(cp% . %2)] -5 %(cp% . %2-)
- = (cpE + g—z)

(85)
The assumption is now made that

- T2 —_
cpt+u?=Au+B (B6)

-2

The expression given by equation (B6) for Cp% + ;— is substituted into

the right side of equetion (BS). Since the right side becomes identical
with the left side upon this substitution, equation (B6) is = valid
relation.
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The constants A and B in equation (B6) are evaluated as follows:

at y = 0:
E=o,€='€w,3=cpEW
at y = O:
- du _ = dt _ Qyr
I-J-Fy—'rw’ ka—q.w)A -Tr';

With the constants thus evalusted, equation (B6) becomes (dropping the
bars for convenience)

2 gy
u
cPt +? = - Twu + cptw (B7)

If equation (B7) is made dimensionless, it becomes simply
ut = 7t ' (B8)
Previously obtained relatioms for t/7, and qfq, are

+

T _ (B, P _E au’ .
T (ﬂw‘”pw uw7ow)ay+ (s)

a_ (k1 ,p,_€\Nat© .o +fp o e \aut
Uy (karw+pwauW7ow)dy* zﬁu(uw+pwuw7pw)dy+ 6)

If use is mede of equatioms (B8), (10), and (26) and the fact that
Pr = a = 1, the resulting equation can be reduced to

2 _

o (89)

i aTow
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APPENDIX C

VELOCITY AND TEMPERATURE PROFIIES FOR CCNSTANT RATIO (F TURBULENT
TO MOLECULAR SHEAR STRESS AT y'{ AND MOLECULAR SHEAR STRESS
AND HEAT TRANSFER IN REGION AWAY FROM WALL (Pr = 1)
The equation fo:E' velocity profile used near the wall is equation
(16), where 1 - ottt =1 - qut?2 for Pr=1 and B = O (see egs. (B8),
(26), and definitions of t+¥ and +t+').

Previously, the expression for 'r/'rw was shown to be

+ +
T pdu o p € du
T ”wdy"'-‘-pr“"prdy"' (5)

and far from the wall (eq. (8)),

2 (d_u‘“)s
€ gy*

Mol Py B a2yt 2

Combining equations (5) and (8) and assuming constent shear stress across
the boundsary layer give

(du+)3-1
+ +
L=l 4o & ML) 20 (c1)
W W d2u+ ay
dy+2
The variations of density and viscosity with temperature are
\
[t 0.68
Her Ty g
c2
. (c2)
o ¥
P, E
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For Pr=a=1 end 8 = 0, the temperature ratio 1s expressed as

£ _ +2
T, c b (c3)

Substitution of equations (C2) and (C3) into (Cl) yields

1= |(1- auf2)0.68 xz dy* du’ (ca)
B dy+2 i
Solving for d?u*/dy*z gives
aut 2
aeyt dy
ayte = (cs)
\/—(1 - ) |1 - (1 - qut?)0-68 du“]
dy"'
If a change in variables is made as
v = au’
= 55;

equation (C5) can be integrated to give

+

o -[1 V(l cm*z)l:l (1-as*2)0-68y]

v = (ce)

The solutions for u' as a function of y* can be obtained by a process

of iteratiom. Assumed values of v for a given increment in ut are
substituted into the right side of equation &cs) until it equels the
left side. The relation between ut and is then calculated from

+
+ _ du
Yy —f -~ (c7)
0]

From equation (BB), =1 for g/q, = t/7,, so that the relation be-
tween Tt and y is also known.

aTos.
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APPENDIX D

VELOCITY PROFILES FOR LINEAR VARTATION OF SHEAR STRESS
AND HEAT TRANSFER ACROSS BOUNDARY LAYER (Pr = 1)
Because the variation of shear in the thin region near the wall is

negligible, the seme equations are used in the present case as were used
in appendix C.

From equation (5), the equation for </, far from the wall, neglect-

ing the viscous stress, is

T _p e al
The expression for e/(u /p,) far from the wall is, from equation (8),
o ( du+)5
% +
€ - dy
p‘w/p'w' d2u+ 2
dy+2

For a linear variation in shear stress,

+
_T_=1_y—+ (D1)
Tw S

Combining the foregoing equations yields

Kz du+4_-
+
1. e \&TF (D2)
st ®°

For B=0, Pr=8=1 ('I.'/Tw=q/qw),

o)
=1 - qt? =¥ (D3)
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Substituting equation (D3) into (D2), rearranging, and teking the square
root of both sides give

a\2
%t _ ~ % (dy+)

D4)
2 (
dy Vl - c:z;t.l"‘2 1 - g_f
8+
&
Letting v = du /dy in equa.tion (D4) and integrating give £
ut
ﬂ’l- 2 41 o= = au®
6+ 8+ v
l
v="v]e (D5)

Equation (D5) can be solved by iteration for B =0 and a given a and .

5"‘, to give ut as a function of y"'. From equation (B8), = Tt for

q/qw = 'r/'rw, so that the relation between T* and y¥ is also known.
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Figure 23. - Predicted variation of skin-friction coefficient with longltudinal-distance Reynolds mmber and Mach number
for  tyftaw of 0.5. Prandtl mmber, 0.75.
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Figurs 24. - Veriatlon of Cf/Cf,i with Mach muwber for various valuss of longitudinsl-distanoe Reynolds number and

t,ftgy Of 0.5. Prandtl muber, 0.75.
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